
Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, June, 2003

2003 Society for Design and Process Science

MODELING WEB SERVICES: TOWARD SYSTEM INTEGRATION IN UNIFRAME

Fei Cao, Barrett R. Bryant, Carol C. Burt, Jeffrey G. Gray

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL 35294, USA
{caof, bryant, cburt, gray}@cis.uab.edu

Rajeev R. Raje, Andrew M. Olson

Department of Computer and Information Science
Indiana University Purdue University at Indianapolis

{rraje, aolson}@cs.iupui.edu

Mikhail Auguston
Computer Science Department

Naval Postgraduate School
auguston@cs.nps.navy.mil

ABSTRACT

 Web Services offer a platform independent solution
for system integration in a distributed environment. But
Web Services are weak in representing the business
semantics of application domains. This paper presents
a model-driven approach for specifying domain-
specific component models in an effort to complement
the current Web Services technology in terms of
enriching the semantics representation. Web Services
Description Language (WSDL) can then be generated
automatically from the models with generators. The
modeling of domain-specific components serves as a
front-end to represent the semantics of components as
well as for formalizing components while the
generated artifacts facilitate component service
synthesis.

1. Introduction

 The integration and reuse of legacy software
systems offer a promising direction for boosting
productivity by dramatically reducing both cost and
time-to-market expenses. One of the Object
Management Group (OMG) initiatives is Model Driven
Architecture (MDA)1, in which legacy systems and
Commercial-Off-The-Shelf (COTS) software can be
transformed by reverse engineering into Platform
Independent Models (PIMs) representing business
functionality with underlying technical details
presented abstractly. If this effort is successful, legacy
systems and COTS software can be reintegrated into
new platforms efficiently and cost-effectively. But for
legacy systems and COTS software, the business logic
and the software structures are usually encapsulated as
black boxes, which makes it difficult to be reverse
engineered. Hence, it is necessary to include the

design artifacts (such as models, high-level
specifications, etc.) in the business components. To
that end, the vision of MDA also includes packaging
models together with parameterized generators. The
application generator will produce customized
components according to the configuration parameters.
In that way, not only can the footprint of business
systems be minimized, but also various kinds of
artifacts of business system can be generated on
demand for system synthesis.

1 http://www.omg.org/mda/

 On the other hand, Web Services (WS)2 technology
offers a platform-independent solution for Enterprise
Application Integration (EAI) by wrapping legacy
systems as WS [Grah02]. Combining the model-driven
approach with WS technology, software systems can
be produced by synthesizing distributed models using
generator technology.
 UniFrame [Raje01] is a framework for seamless
integration of heterogeneous distributed software
components to assemble a complete distributed
software system. The assembly process involves the
generation of glue/wrapper code [Brya02], which is a
challenging ad-hoc task considering the heterogeneous
nature of distributed components. Because WS are
based on open industry standards working across
different platforms, wrapping heterogeneous
components with WS for integration will transform the
assembly task from n*m to n*1 processes (see Figure
1). The contribution of this paper is to propose the use
of WS as a potential vehicle for system integration in
UniFrame by enhancing semantic expressive power of
WS using the model-driven approach. The related
process is described herein.
 In this paper, we present an approach based upon
the principle of Model-Integrated Computing (MIC)
[Léde01] to model the business domain-specific UMM
component models. This involves a graphical modeling

2 http://www.w3.org/2002/ws/

 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Modeling Web Services: Toward System Integration in Uniframe

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham,Department of Computer and
Information Sciences,Birmingham,AL,35294

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of IDPT 2003, the Seventh World Congress on Integrated Design and Process Technology, Dec
3-5, 2003, Austin,TX

14. ABSTRACT
Web Services offer a platform independent solution for system integration in a distributed environment.
But Web Services are weak in representing the business semantics of application domains. This paper
presents a model-driven approach for specifying domain-specific component models in an effort to
complement the current Web Services technology in terms of enriching the semantics representation. Web
Services Description Language (WSDL) can then be generated automatically from the models with
generators. The modeling of domain-specific components serves as a front-end to represent the semantics
of components as well as for formalizing components while the generated artifacts facilitate component
service synthesis.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

environment for customizing a domain system based
on domain-specific meta-models. An interpreter is built
to generate WS Description Language (WSDL)1 for
business service integration. A generator can also be
created to directly synthesize the implementation code.
Figure 2 gives an overview of the approach.
 This paper is organized as follows. Section 2
introduces the background knowledge of the UniFrame
project, for which the proper meta-model development
is imperative. Section 3 introduces the modeling
environment and modeling targets with regard to the
UMM model and WS. Section 4 describes the
interpreter that generates the WSDL. A banking
example is given in Section 5 illustrating the proposed
approach. This paper ends with the conclusions and
outlook in Section 6.

2. UniFrame

 UniFrame is based on the Unified Meta-Component
Model (UMM) [Raje00] for describing components.
Systems constructed by component composition should
meet both functional and non-functional requirements
such as Quality of Service (QoS) requirements
[Raje02]. UniFrame includes a specification of
appropriate QoS parameters, which provide metrics of
service at both the component level and system level,
so that the software system produced by assembling
heterogeneous components can be benchmarked over
not only functional requirements, but also non-
functional criteria. A Generative Domain Model
(GDM) [Czar00] is used to describe the properties of
domain- specific components and to elicit the rules for
component assembly.

2.1 UMM

 In the Unified Meta-Component Model (UMM),
we are concerned about the following three aspects:

a) Component:

 In [Medv97], components are described as being
composed of the following aspects: interface, types,
semantics, constraints and evolutions. But, this view
does not reflect the collaborative features of distributed
components. We believe that a component, as a

provider for computational functionality and a gateway
for further resource offerings, has not only
computational aspects, but also cooperative aspects in
distributed environments, as well as other auxiliary
aspects like mobility and security.

1 http://www.w3.org/2002/ws/

b) Service and Service Guarantees.

 Here we are focusing on providing metrics for
quantifying the services provided by components as a
criteria for making choices from multiple service
providers, as well as criteria of judging assembled
system by composing components. Once a component
does not satisfy the expected QoS, it is a candidate for
substitution. By modeling QoS aspects in the meta-
model, we can weave the QoS instrumentation into
generated code for QoS measurements at deployment
time.

c) Infrastructure

 In UniFrame, the Internet Component Broker (ICB)
and Headhunters [Sira02] are proposed as two facilities
in an effort to seamlessly integrate heterogeneous
components. ICB provides translation capacity in terms
of adapter technology for achieving interoperability,
while Headhunters actively detect the presence of new
components in the search space, register their
functionality and attempt match-making between client
components (service requesters) and server
components (service providers). By generating such
component specifications in XML, a component can be
exposed for external querying, e.g., using XQuery2.
Also, a pre-built meta-model, from which the domain-
specific model is created, represents the domain
ontology [Grub93] and provides the leverage for the
ICB and Headhunter.
 The aforementioned three concerns necessitate a
proper methodology of creating a meta-model to
modeling the following categories:

Inherent
Attributes

ID

Description
Algorithm
Complexity
Syntactic
Contract
Technology

Computational Attributes

Functional
Attributes

…
Precondition Cooperation Attributes

 Postcondition

Security

Mobility

Auxiliary Attributes

….
Availability
End-to-End delay

QoS Metrics

……

2 http://www.w3.org/XML/Query

Figure 1. Reducing Gluing/Wrapping Process

Web Services

Table 1. Component Description in UMM

 2

Domain-Specific Meta Model
(Business Ontology)

MDA Meta Level
(M0-M2) Generator1

Domain-Specific Model WSDL

wrapping Generator2

Legacy System

Figure 2. Overview of Approach

 Figure 3. Meta-Model of WSDL

Obviously, a pure textual specification of UMM, while
still a viable choice, will be error prone and hard to be
processed and reused. The widely used Rational Rose
[Quat00] toolkits, however, can only be used for non-
executable modeling, in the sense that you have no
control over generation of complete applications,
which is not adequate enough for modeling UMM.
This problem will be addressed using tool support
introduced in the next section.

3. Modeling as the Front End of Web Services

3.1 Generic Modeling Environment (GME)

 Model Integrated Computing (MIC) employs meta-
modeling to define the domain modeling language and
model integrity constraints. It uses these meta-models

to automatically compose a domain-specific design
environment and generate input to some analysis tools
such as Matlab Simulink/Stateflow [Neem02]. MIC
includes the Generic Modeling Environment (GME)
for creation of domain-specific models, a Model
Database for model storage, and a Model Interpretation
technology for building model interpreters. In GME,
the meta-models use Unified Modeling Language
(UML) class diagrams to model the system
information. Figure 3 gives the WSDL meta-model
using GME. Also MCL (MGA1 Constraint Language)
[GME00], which is a subset of UML OCL2 with some
MGA specific extension, is used to enforce some

1 MultiGraph Architecture [Szti95]
2 http://www-3.ibm.com/software/ad/library/standards/
ocl.html

 3

semantic rules in MGA modeling paradigms. This adds
some formalism to the modeling, which can be used to
enrich the semantic expressiveness of WSDL, as is
explained later in section 5
 WSDL is not convenient to be manually coded.
Many tools such as AXIS1, and the Microsoft .Net
framework provide the function of generating WSDL
from implementation code (such as Java and C#) and
vice versa. Such tools leverage compiler technology to
generate WSDL from some other programming
languages. In contrast, by generating WSDL from a
high-level language-independent model, we can avoid
the need for language-specific compilers. This permits
easier maneuvering of the generated WSDL at a higher
level. Also, by standardizing the meta-model and the
associated generator, the domain ontology will be
uniformly embodied in generated WSDL. This will
facilitate program-to-program interoperation bearing
the intelligence of software agents, such as autonomy
and knowledge [Gris01].

3.2 Enriching and Modeling WS Semantics

 Current WS standards mainly embody the
semantics of processes at the collaborating syntactic
interface level. WSDL only exposes distributed object
services, while such process behavior aspects as
ordering, and dependency are not well specified in the
existing WSDL standard. Figure 4 gives the meta-
model of a Finite State Machine (FSM), which can be
used to model the dynamic behavior of WS, in
particular, the sequence of states that the WS behavior
goes through in its lifetime. We will illustrate this point
in detail in a later example.

1 http://ws.apache.org/axis/

4. Web Services Generator

 A key aspect of MDA is the generator technology.
By generating implementation code from a high-level
specification language, software systems can be
produced with high efficiency while the scale of
software reuse will be reduced at the specification
level. GME provides the Builder Object Network
(BON) framework [GME00] for building interpreters
by instantiating each object in the model tree with a
C++ object. The objects in the model tree can be
traversed by calling methods within the BON API. In
order to precisely generate target code from the models
using a generator, a special atom can be added in the
GME environment denoting specific meaning so as to
enrich the semantics of modeling. e.g., in feature
modeling [Czar00], there are mandatory features,
optional features and alternative features for some
concept. We can add a Require atom, an Or atom, an
XOR atom to denote the three relationships between
other atoms. Figure 5 illustrates the strategy. In this
way, the designated semantics can be captured when
traversing the model tree. This strategy can also be
applied to model UML relationships such as
Dependency, Generalization, and Association. In this
way, the built-in class diagram facilities of GME itself
can be extended.

5. Putting it Together

 This section will use GME to create a meta-model
embracing both UMM and WS, and an interpreter is
built based on this meta-model for generating WSDL
in an effort to facilitate component service synthesis in
UniFrame.

5.1 Creating Banking Domain Meta-Model

 Below is a simple banking domain specification:

A bank provides the service for users to
set up accounts. Account information
includes personal data including Name,
SSN, phone number, address, and account
data including Account Number, PIN,
Transaction Record, Balance. There are
two types of accounts: checking account
and savings account.

For the bank side, it provides such
services as: Account Validation (to
ensure legal access of account), Account
Verification (to double check the account
after each transaction, including
transaction history, transaction
description, etc), Account Query (balance
checking), Deposit, Withdraw, and
Transfer. There is order restriction for
those operations. Both Transfer and
Withdraw have to be preceded by a Query
operation. The Account Verification comes
after each of the other operations.

Figure 4. Finite State Machine (FSM) Meta-model

 4

 C C C

Require OR XOR

C2 C1 C2 C3 C3 C1 C1 C2 C3

(3) Concept C contains exactly one of the three
features: C1, C2, C3

Figure 5. Representing

F

Deposit and withdraw can only
to checking account (this is
generic case, though). The afor
services are optional so lon
above rules are observed.

The banking service may leve
technology as RMI, J2EE, and C
it will enforce some QoS concer
Availability, Dependability,
etc. (For more QoS parame
[Raje02]).

 Directly expressing the above spe
WSDL will tend to blur the 4+1 view1 of

1 which includes functional requirements, so
organization, run-time implementation structure of
For details see [Kruc95]
(2) Concept C contains some of the three
features: C1, C2, C3
(1) Concept C requires all the three
features: C1, C2, C3
5

 Semantics of Feature Modeling with Atom-to-Atom Connection

igure 6. Meta-model of Banking Domain

be applied
not the

ementioned
g as the

rage such
ORBA. Also
ns such as
Capacity,
ters see

cification in
 the software

architecture. Thus it is hard to represent the intended
requirements precisely and the constraints can not be
warranted. Model-based WSDL generation will be
able to solve the ambiguity problem by clearly
modeling the specification in a graphical fashion to
capture all the involved relationships. The meta-model
in Figure 6 represents the banking domain knowledge.
It’s derived from WSDL elements and banking domain
knowledge. portType in WSDL denotes the WS
abstract interface definition. It is represented as a
model in Figure 6, which contains the following
banking-domain specific operations: query, deposit,
withdraw, transfer, verification. binding in WSDL
denotes how the elements in an abstract interface
(portType) are converted into a concrete representation
in a particular combination of data formats and
protocols (here, platform specific implementation in

ftware module
 the system, etc.

 6

CORBA, J2EE, RMI, etc). Consequently, binding is
represented as a connection between portType and
UMM_Attibutes, which is the parent of the CORBA,
J2EE and RMI atoms.
 The left part of Figure 6 (PersonalAccount,
Account, checking, saving) is basically about a
simplified version of the feature modeling [Czar00] of
the banking domain, which is treated as input
(represented as connection here) into operations of
portType. Also QoS parameters, by being associated
with portType, will be embedded into the generated
WSDL as extended attributes. WSDL itself is XML
based, so a query expressed in XQuery can make use
of extended WSDL attributes to refine the query in
selecting targeted WSDL. Here, the listed QoS
parameters are treated as of static type. For dynamic
parameters, we can apply aspect weaving [Kicz97]
technology in the code generation phase for performing
dynamic measurements.
 The specified constraints over withdraw and deposit
operations can be enforced in GME using the following
MCL (refer back to section 3.1) expression:

connectedFCOs("src")->forAll(
c|c. kindName() ="checking")

Those constraints apply to both the withdraw atom and
the deposit atom in Figure 6, which means those First
Class Objects (FCO: referring to both entities and
relations in GME) that are connected with
withdraw/deposit atoms are all of kind "checking";

i.e., those services can only be applied to checking
account.
 But, when it comes to the handling of order
constraints as specified in the banking domain
example, obviously MCL is not adequate enough to
capture such dynamic behaviors. Such modeling
techniques as using the Finite State Machine will
provide modeling capacity for advanced behavior,
which is detailed in the next section.

5.2 A Banking Model and WS-based Integration

 Figure 7 is an example of the banking model. For
this model, "My Account" is the name for the
"PersonalAccount" model. It has two kinds of account:
both checking (c) and savings (s). "Service Offering"
represents the "portType". It offers 4 types of service
(without transfer in this case): d: deposit, q: query, w:
withdraw, v: verification. From the connections
between the ports we can see for this banking model,
the query can only be applied to the savings account,
while verification can be carried out over both types of
account. Withdraw and deposit only applies to
checking account. Otherwise the modeling
environment will give warnings when modeling, which
is consistent with the MCL specification. Also, notice
for this banking model, RMI technology is adopted and
some QoS parameters are specified here, as shown in
the lower-right corner attribute list. The attribute list
associated with RMI will also be shown in the corner if
the RMI atom is under focus.

 Figure 7. "My Account": a Banking Model

 From the model in Figure 7 the interpreter will
generate two sets of codes: the WSDL code for the
banking service embedded with QoS parameter
extension, and the WS wrapping code for the
underlying RMI implementation. Because the
generated WSDL is quite lengthy, we will just show
some model-specific contents as shown in the
following paragraph. Notice the bold-font part of the
following WSDL represents the QoS extension of
WSDL, which may be used for WS filtering if QoS
requirements are submitted in the query expression.

<definition name="my bank">

<types>
<xsd:schema

targetedNamespace="http://localhost/bank"
xmlns:xsd="http://www.w3

.org/2001/XMLSchema">
<xsd:complexType name="Account">

<xsd:sequence>
<xsd:element name="AccountNumber"

type="xsd:string"/>
<xsd:element name="Pin"

type="xsd:string"/>
<xsd:element name="Balance"

type="xsd:decimal"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="checking">

<xsd:complexContent>
<xsd:extension base="Account">

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="savings">
<xsd:complexContent>

<xsd:extension base="Account">
<xsd:attribute name="interest_rate"
type="xsd:decimal"/>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>
</types>

<message name="checking">
<part name="p1" type="checking"/>

</message>
<message name="savings">
<part name="p1" type="savings"/>

</message>
<message name="checking_savings">
<part name="p1" type="checking"/>
<part name="p2" type="savings"/>

</message>

<portType name="bankPortType">
<operation name="withdraw">

<input message="checking"/>
<output message=""/>

</operation>
<operation name="deposit">

<input message="checking"/>
<output message=""/>

</operation>
<operation name="verification">
<input message="checking_savings"/>
<output message=""/>

</operation>
<operation name="query">

<input message="savings"/>
<output message=""/>

</operation>
</portType>

<binding>
.........
</binding>

<service name="My Bank" Portability="0.544400"
Dependability="0.780000" Turn-around-
time="12.000000"/>

<port>
.....
</port>

</service>

</definition>

Now we turn to the handling of the order restriction
requirement in the banking domain specification. We
will use the FSM meta-model (Figure 4) to build the
banking service state model as shown in Figure 8 and
the associated interpreter. Because every service
corresponds to the child node (atom) of portType
model in Figure 6, we can use BON API (refer back to
Section 4) to traverse those child atoms of portType in
the banking model one by one while retrieving the
connection information of each atom. The generated
WSDL extension describing the state transition process
is as follows:
<state>

<state name= "Login" >
<state name="Validation" >
<state name="Query" >
<state name="Deposit" >
<state name="Transfer" >
<state name="Withdraw" >
<state name="Verification" >

</state>
<transition>

<transition src="StartState"
dst="Login" condition="">

<transition src="Login" dst="Login"
condition="">

<transition src="Login"
dst="Validation" condition="">

<transition src="Validation"
dst="Deposit" condition="">

<transition src="Validation"
dst="Query" condition="">

 <transition src="Deposit" dst="Deposit"
condition="">

<transition src="Deposit"
dst="Verification" condition="">

<transition src="Query" dst="Transfer"
condition="">

<transition src="Query" dst="Query"
condition="">

<transition src="Query" dst="Withdraw"
condition="">

<transition src="Query"
dst="Verification" condition="">

<transition src="Transfer"
dst="Transfer" condition="">

<transition src="Transfer"
dst="Verification" condition="">

<transition src="Verification"
dst="StartState" condition="">

<transition src="Verification"
dst="Verification" condition="">

<transition src="Verification"
dst="EndState" condition="">

<transition src="WithDraw"
dst="WithDraw" condition="">

<transition src="WithDraw"
dst="Verification" condition="">

</transition>

 7

Note in the generated state transition code, the
"condition" attributes are supposed to be customized in
the specific banking behavior model before code
generation, which for the sake of brevity are left blank
here. The state transition specification generated here
may be used in guiding the WS consumption and
composition.

6. Conclusions and Future Research

 This paper applies the model driven approach to
WS technology. By modeling service behavior at a
higher level, the system semantics can captured at a
finer grain. Meanwhile, different artifacts can be
derived from models using a generator, which will not
only refine the service presentation, but also facilitate
system integration. In particular, this approach is
applied in the context of the UniFrame project for
system integration. So far, we have implemented a
prototype with the function of WSDL generation from
a specific component model and FSM modeling for
component services.
 Because the meta-model is the starting point and
cornerstone of system integration, we will need to
refine the meta-model leveraging domain knowledge
until it can be standardized. To enhance the semantics
expressing capability of WS, future research will
involve not only state machine modeling, but also the
modeling of other behavior concerns, such as
interaction, activity, process/thread and temporal
relationship. Also, technology and QoS modeling in
the above banking example are still quite primitive,
both of which need further exploration for the ultimate

Figure 8. Banking behavior model based on FSM meta-model

model-based glue/wrapper code generation between
WS and other component models.

Acknowledgements. This research is supported by the
U. S. Office of Naval Research under the award
number N00014-01-1-0746.

REFERENCES

[Brya02] Bryant, B. R., Auguston, M., Raje , R. R.,

Burt, C. C., Olson , A. M., 2002, "Formal
Specification of Generative Component
Assembly Using Two-Level Grammar,"
Proc. SEKE, 14th Int. Conf. Software
Engineering and Knowledge Engineering,
pp. 209-212.

[Czar00] Czarnecki, K., Eisenecker, U.W., 2000,
Generative Programming: Methods, Tools,
and Applications, Addison-Wesley.

[GME00] "GME 2000 User’s Manual, Version 2.0,"
2001, ISIS, Vanderbilt University.

[Grah02] Graham, S., Simeonov, S., Boubez, T.,
Davis, D., Daniels, G., Nakamura,Y.,
Neyama, R., 2002, Building Web Services
with Java, SAMS.

[Gris01] Griss, M., 2001, "Software Agents as Next
 Generation Software Components",

Component-Based Software Engineering, ed.
Heineman, G. T., Councill, W. T., Addison-
Wesley, pp. 641-657.

[Grub93] Gruber, T. R., 1993, "A translation approach
to portable ontology specifications,"
Knowledge Acquisition, Vol. 5, No. 2, pp.

 8

199-220.
[Kicz97] Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Lopes, C. V., Loingtier, J.-M.,
and Irwin, J., 1997, "Aspect-Oriented
Programming," Proc. ECOOP, European
Conference on Object-Oriented
Programming, Springer-Verlag LNCS Vol.
1241, pp. 220-242.

[Kruc95] Kruchten, P.B., 1995, "The 4+1 Views
Model of Architecture", IEEE Software, Vol.
12, No. 6, pp. 42-50.

[Léde01] Lédeczi, Á., Bakay, A., Maroti, M.,
Volgyesi, P., Nordstrom, G., Sprinkle, J. and.
Karsai, G., 2001, "Composing Domain-
Specific Design Environments," IEEE
Computer, Vol. 34, No. 11, pp. 44-51.

[Medv97] Medvidovic, N., Taylor, R.N., 1997, "A
Framework for Classifying and Comparing
Software Architecture Description
Languages, " Proc. ESEC/FSE '9, European
Software Engineering Conf./9th Conf.
Foundations of Software Engineering,
Springer-Verlag LNCS Vol. 1301.

[Neem02] Neema, S., Bapty, T., Gray, J., Gokhale, A.,
 2002, "Generators for Synthesis of QoS
Adaptation in Distributed Real-Time
Embedded Systems," Proc. GPCE, First
ACM SIGPLAN/SIGSOFT Conf. Generative
Programming and Component Engineering,
Springer-Verlag LNCS Vol. 2487, pp. 236-
251.

[Quat00] Quatrani, T., 2000, Visual Modeling with
Rational Rose 2000 and UML, Addison
Wesley.

[Raje00] Raje, R., 2000, "UMM: Unified Meta-object
Model for Open Distributed Systems," Proc.
ICA3PP, 4th IEEE Int. Conf. Algorithms and
Architecture for Parallel Processing, pp.
454-465.

[Raje01] Raje, R., Bryant, B., Auguston, M., Olson,
A., Burt, C., 2001, "A Unified Approach for
the Integration of Distributed Heterogeneous
Software Components," Proc. Monterey
Workshop Engineering Automation for
Software Intensive System Integration, pp.
109-119.

[Raje02] Raje, R. R., Auguston, M., Bryant, B. R.,
Olson, A. M., Burt, C. C., 2002, "A Quality
of Service-Based Framework for Creating
Distributed Heterogeneous Software
Components," Concurrency and
Computation: Practice and Experience, Vol.
14, No. 2, pp. 1009-1034.

[Sira02] Siram, N. N., Raje, R. R., Olson, A. M.,
Bryant, B. R., Burt, C. C., Auguston, M.,
2002, "An Architecture for the UniFrame
Resource Discovery Service," Proc. SEM,
3rd Int. Workshop Software Engineering and
Middleware, Springer-Verlag LNCS Vol.
2596.

[Szti95] Sztipanovits, J., Karsai, G., Biegl, C., Bapty,
T., Lédeczi, Á., Misra, A., 1995,
"MULTIGRAPH: An Architecture for
Model-Integrated Computing," Proc. IEEE
ICECCS, International Conference on
Engineering of Complex Computer Systems,
pp. 361-368.

 9

	{rraje, aolson}@cs.iupui.edu

